
IFT 6132 Final Project
Introduction to Manifold Optimization and Geodesic Convexity

Philippe Laferriere * 1 Samuel Laferriere * 1

Abstract
In this short report, we attempt to give a (very)
brief overview of manifold optimization. Mani-
fold optimization’s goal is to generalize optimiza-
tion from flat Euclidean spaces to the larger do-
main of Riemannian manifolds. Not only does
it promise to extend classical algorithms such as
steepest descent and Newton’s method to a whole
new set of problems, but also to rethink estab-
lished solutions to classical problems, such as
learning Gaussian mixture models, and in so do-
ing outperform prevailing methods. Given the
brevity of this report, it is impossible for us to de-
fine every object formally while also giving many
examples. We thus expect readers to be already
somewhat familiar with either differential geom-
etry or optimization. Experts of the former will
hopefully enjoy learning about a new concrete ap-
plication of their domain of research, and experts
of the latter will discover new methods to extend
their toolbox.

The word manifold, to most people who haven’t formally
studied them, probably only brings to mind vague pictures
resembling those in Figure 1. Seeing it next to the word op-
timization probably leaves them wondering why we would
ever want to optimize functions on such exotic looking
surfaces. Indeed, apart from the sphere, which arises natu-
rally in eigenvector optimization problems (see section 3),
most of these classical manifolds studied by mathematicians
won’t be of much interest to us. Most of the manifolds that
will arise from optimization problems will be matrix man-
ifolds. Some of them will be easy to grasp and visualize,
such as the good old Euclidean space1 Rn, but others will
be much more abstract. Nonetheless, thanks to the Whit-

*Equal contribution 1Department of Computer Science and
Operations Research, University of Montreal, Montreal, Canada.
Correspondence to: Samuel Laferriere <samlaf92@gmail.com>,
Philippe Laferriere <laferriere.phil@gmail.com>.

IFT 6132 project report - Université de Montréal
1which can be, using its standard topology, trivially turned into

a manifold.

Figure 1. Classical Compact Manifolds. (Renze et al.)

ney embedding theorem, we know that every manifold can
be embedded into some large Euclidean space, and so can
safely be thought of as just being a constrained set, that is,
a subset of Rn for some large n. In this way, every open
subset of Rn can be turned into a manifold by adding some
trivial structure. Manifold optimization, however, refers to
a special set of techniques which requires further restrict-
ing the subsets considered, to those that admit a ”smooth”
manifold structure, as well as a special object called a Rie-
mannian metric. These special subsets, with their added
structure, are called Riemannian manifolds.

The theory behind manifold optimization is now well devel-
oped (Edelman et al., 1998; Absil et al., 2008), and software
packages are being created to give access to these great tools
for nonspecialists. Manopt (Boumal et al., 2014) is probably
the most well known, and has greatly lowered the barrier
of entry for applied researchers and engineers of other dis-
ciplines. Pymanopt (Townsend et al., 2016) has further
given manopt access to python’s great auto-differentiation
facilities, alleviating the need to implement derivatives and
hessians by hand. This combination really leaves no excuse
not to start using this great technology. We hope that this
report will help spread the word about this field.

1. General Setting
Any optimization problem minx∈X f(x) only contains two
components: the domain X over which we are optimizing,
and the scalar cost function f : X → R that we want to
minimize. Most solution methods are iterative. That is, they
start from an initial guess x0 ∈ X and then improve on that
guess iteratively. Gradient descent (GD) is a well known
and simple example, which moves in the direction opposite

IFT 6132 Final Project

the gradient at each point: xk+1 = xk − αk∇f(xk), with
αk being a predefined step-size.

Manifold optimization is an optimization problem where
X is a manifold (see section 2). To make the distinction
clear, we often use M to denote the manifold and p to
denote points in it. This way, the optimization problem is
written as: minp∈M f(p). See for example Algorithm 1.
This seemingly innocent change however, hides a lot of
complexity, which we will unravel one step at a time.

Our running example throughout this report will be find-
ing the largest eigenvalue of a symmetric matrix A.
This problem can be written as (Ghojogh et al., 2019)
min||x||2=1−xTAx (the eigenvector associated to this
eigenvalue is found by changing the min to an argmin).
Hence, if we write f(x) = −xTAx, and realize that the
unit sphere Sn−1 = {x ∈ Rn : ||x||2 = 1} can be
turned into a manifold, this problem can be written as both
minx∈Rn,||x||2=1 f(x), and minx∈Sn−1 f(x). That is, we
can see the problem either as a constrained problem in a
Euclidean space, or as an unconstrained problem on a mani-
fold. We will see that the manifold perspective has its own
advantages.

This problem, written in Pymanopt, requires nothing more
than those three simple ingredients:

import pymanopt
from pymanopt.manifolds import Sphere

from pymanopt.solvers import SteepestDescent

import autograd.numpy as np

(1) Instantiate the manifold M

manifold = Sphere(100)

(2) Define the cost function f

A = np.random.randn(100,100)

A = A + A.T # to make A symmetric

@pymanopt.function.Autograd

def cost(x): return - x.T @ A @ x

(3) Instantiate a Pymanopt solver

solver = SteepestDescent()

(4) Optimize

problem = pymanopt.Problem(manifold, cost)

Xopt = solver.solve(problem)

Source Code 1. Largest eigenvalue using Pymanopt.

Our main goal for this article is to understand what the Steep-
estDescent solver is doing. If we stare at that GD iterate
for Euclidean spaces once again, xk+1 = xk − αk∇f(xk),

we find that it doesn’t make sense in the manifold settings.
For one, how is the gradient even defined? Remember that
the gradient in Euclidean spaces is defined as the vector
of partials ∇f(x) = (∂f∂x1 (x), . . . , ∂f∂xn (x)), where the ith
partial derivative ∂f

∂xi is directional derivative of f in the
direction of the standard basis vector ei. Formally,

∂f

∂xi
(x) = lim

t→0

f(

!?︷ ︸︸ ︷
x+ tei)− f(x)

t

Note the ”!?” overbrace. There is no linear structure on
a manifold, so not only is there no such thing as a stan-
dard basis vector ei, the operations of addition and scalar
multiplication in x+ tei are not even defined! Fortunately,
there is a way around this problem. A manifold constrains
the directions in which we are able to move in the ambient
Euclidean space. The allowed directions are those tangent
to the manifold, which is a linear space! We will be able to
define these tangent spaces abstractly so as not to make ref-
erence to the ambient space, and the gradient, the direction
of ”fastest increase”, will then live on this space.

Our last problem when trying to mimic the GD update
xk+1 = xk − αk∇f(xk) is that xk lives on the manifold
whereas ∇f(xk) lives on the tangent space, so we cannot
add them. The last missing piece will be a retraction func-
tion (Absil & Malick, 2012) that moves from the tangent
space back into the manifold. See Figure 5 for a graphical
depiction of this concept.

With these concepts in hand, we now have our first algorithm
on manifolds.

Algorithm 1 Riemannian Gradient Descent
Input: Riemannian Manifold M , cost function f ,

step sizes αk, convergence criterion ε.
Initialize p0 ∈M , k = 0.
repeat
gk = gradf |pk # Compute the gradient of f at pk
pk+1 = Retractionpk(−αgk) # Step in direction −gk
k := k + 1

until f(pk)− f(pk−1) < ε
Output: pk

2. Manifold
Before going anywhere, we must start by having a solid
foundation about the very space we are optimizing over.
We start by defining manifolds, then explain what smooth
manifolds and their tangent spaces are, and finally get to
Riemannian manifolds, which add an inner product on the
tangent spaces of smooth manifolds.

Formally, a manifold is a topological space that is locally

IFT 6132 Final Project

homeomorphic to Rn. In order to understand this statement,
we need to first define what a topological space is, and what
a homeomorphism is.

A topological space is a 2-tuple structure (X,O), where X
is a set (called the underlying space), and O ⊆ P(X) is a
subset of the power set ofM (called the topology on X).
The sets ofO are called open sets. A topology on top of a set
permits defining the notion of continuity of functions. Given
two topological spaces (X,OX) and (Y,OY), a function
f : X → Y is continuous if f−1(U) ∈ OX for all U ∈ OY .
In words, f is continuous if the pre-image of every open
set is open. In this respect, a topology is the bare minimum
structure that, when added to a set, permits talking about
continuity of functions. Now, given two topological spaces,
we can compare them, and ask whether they are ”equivalent”
in some sense. This notion is made formal by homeomor-
phisms. A homeomorphism is a bijective function between
two topological spaces that is continuous and whose inverse
is also continuous. Hence, if f : (X,OX)→ (Y,OY) is a
homeomorphism, then the bijection makes underlying sets
X and Y equivalent, and the continuity of f and its f−1

make the topologies OX and OY equivalent. This is why
two spaces are said to be equivalent, in the topological sense,
if there is a homeomorphism between them. Topologies also
permit defining limits of sequences. But that is really all
that they can be used for: talking about limits and continu-
ity. For readers wanting to refresh their topological notions
or wanting more details, we suggest looking at (Munkres,
2000).

In our case however, we are interested in doing optimization,
and methods such as steepest descent on Rn require access
to both derivatives, as well as to an inner product. We
do not have either of these on general topological spaces,
and so we will need to add some further structure to the
underlying spaceX . The only problem is that inner products
can only be defined on vector spaces, and not on general
topological spaces. Indeed, inner products are bi-linear
functions, that is, linear in both of their arguments. But the
whole point of manifold optimization is to generalize vector
spaces, and do optimization without the linear structure of
Rn! The solution to this conundrum will be to define the
inner product not on the space X itself, but on a related
space, called the tangent space to X . This added structure
will also permit taking derivatives.

Formally, an n-dimensional manifold is a 3-tuple structure
(M,O,A), where (M,O) form a topological space, and
A is a set of maps, φU : U → Rn, one for every open set
U ∈ O, which maps this open set to Rn homeomorphically.
Here, it is implicit that Rn is a topological space with the
standard topology induced by the dot product. A is called
an atlas, and its maps φU are called (coordinate) charts, be-
cause we can use them to describe points on the manifold

using coordinates, just like we do in vector spaces. The only
difference is that on a manifold, these coordinates are lo-
cal only, whereas they are global in vector spaces. Figure 4
presents two open sets with their charts. At this point, we no-
tice that points p of a Manifold can be part of more than one
chart, each of which maps p to different coordinates in Rn.
We can ask how these different representations are related.
For every two charts φU and φV whose domains intersect
U ∩V 6= ∅, the map φU ◦φ−1

V : φV (U ∩V)→ φU (U ∩V)
that relate the two charts are called transition maps. Fig-
ure 4 depicts two transition maps, labeled τα,β and τβ,α.
The properties of these transition maps give structure to the
manifold. For instance, smooth manifolds are manifolds
such that these transition maps are infinitely differentiable.
We will explain why this is important, keeping our optimiza-
tion goal in mind. Readers interested in a more gradual
and comprehensive treatment of manifolds should consult a
proper reference, such as (Loring, 2008).

We remind ourselves that we have a cost function f : M →
R defined on the manifold, and standing at a point p on the
manifold, want to move in the direction in which f locally
increases the most. But ”locally increases the most” just
means ”whose local derivative is greatest”. So we need to
be able to take directional derivatives on the manifold. But
we saw in the previous section that this was not permitted
on manifolds, because we cannot add or subtract points of
the manifold.

R M R

Rn

γ f

φ f̄ = f ◦ φ−1γ̄ = φ ◦ γ

Figure 2. The structure around a manifold: curves, functions, and
charts.

In order to resolve this issue, we will need to define curves
(also called paths) on the Manifold. A curve on M is a
function γ : [a, b] ⊆ R→M which maps a closed interval
of R into M . An example curve γ(t) is depicted in Fig-
ure 5. A curve not only traces a path on M , but also permits
differentiating functions on M . If γ(0) = p, then we can
define

∂f

∂γ
(p) :=

df ◦ γ
dt

(0)

This is well defined because the function f ◦ γ is a function
from R to R. It is depicted in the top part of diagram in
Figure 2. We call ∂f∂γ (p) the directional derivative of f at p
in the direction of γ. We note that many different curves will
give the same directional derivative. This is because ∂f

∂γ (p)
only considers how γ behaves infinitesimally close to p. We

IFT 6132 Final Project

Figure 3. Steepest descent direction in the norm ||x||2 = xTQx.
(Numerical Optimization slides)

might want to follow our Euclidean intuition, and follow
”straight” curves, as the γ in Figure 5 seems to be. However,
defining ”straightness” on manifolds is really non-trivial,
and requires extra structure which we will only introduce
later (see section 4.2).

At this point, in order to find the direction of steepest de-
scent, we would need to calculate ∂f

∂γ (p) for curves going in
every single direction. Once we found the steepest direction,
we could move along it for a short distance, and then iterate.
This would work, except that we would be left needing to
answer the question ”how many directions should I check
before moving?” In Rn, the gradient answers this question
beautifully, in that we only need to compute n different
partial derivatives in order to find the direction of steepest
descent! But this requires a linear structure. Fortunately,
because derivatives and gradients are a local phenomena, it
will turn out that we can ”linearize” the manifold around
each point and profit from the exact same benefits.

We first need to define a little bit of terminology. For any
function f : M → R, point p ∈M , and local chart (U, φU)
around p, we call f smooth (or infinitely differentiable) at
p if the function f̄U = f ◦ φ−1

U : Rn → R is smooth (or
infinitely differentiable) at φU (p) (see Figure 2). This notion
is well defined, in that it doesn’t depend on the choice of
local chart U , because of the earlier restriction that we made
to smooth manifolds, that is manifolds whose transition
maps φU ◦ φ−1

V are smooth (remember Figure 4). That is, if
f̄U is smooth in one chart (U, φU), then so is f̄V for all other
charts (V, φV) around p. This is because f̄V = f ◦ φ−1

V =
f ◦ (φ−1

U ◦ φU) ◦ φ−1
V = (f ◦ φ−1

U) ◦ (φU ◦ φ−1
V). Hence,

f̄V , being the composition of two smooth functions, is also
smooth. We denote by C∞ all functions f : M → R which
are smooth around every point on the manifold.

We define a tangent vector at p to be an operator vp :
C∞(M)→ R that takes functions and returns a real num-
ber and such that there is a curve γ with γ(0) = p that

Figure 4. Two charts on a manifold, and their respective transition
maps. (Wikipedia: Atlas (topology))

realizes this operator, that is

vpf := γ̇(0)f :=
∂f

∂γ
(p) =

df ◦ γ
dt

(0)

Note that for a given tangent vector v, many different curves
γ will realize it. Indeed, tangent vectors are really equiva-
lence classes of curves. The tangent space TpM to M at p
is then defined as all tangent vectors vp at p. We can turn
tangent spaces into vector spaces, by defining

(aγ̇1(0) + bγ̇2(0))f := a(γ̇1(0)f) + b(γ̇2(0)f)

To show that TpM is a vector space, we just need to show
that there is a curve γ for which γ̇ = (aγ̇1(0) + bγ̇2(0)).
This is done by taking a local chart (U, φ), pushing both
of γ1 and γ2 into Rn, adding them there, and then pulling
them back: γ(t) = φ−1(aφ(γ1(t)) + bφ(γ2(t))).

Now that we have defined the tangent spaces where most of
the optimization action will be happening, we take a small
step back to remind ourselves of our objective, which is to
calculate the steepest descent direction. In inner product
Euclidean spaces, the steepest descent direction d is found
by

d = argmin
d:||d||=1

〈∇f(x), d〉

The steepest descent, in norms other than L2, will not be the
gradient. See Figure 3 for a graphical depiction. So in order
to find the steepest descent direction on tangent spaces, we
will need access to an inner product, and we will also need
to define∇f(x). We start with the latter because we already
have all of the necessary ingredients. Given a local chart
(U, φ), we define ∇f(x) = (∂f̄∂x1 (x), . . . , ∂f̄∂xn (x)). Notice
that the partials are with respect to f̄ = f ◦ φ−1! It might
seem like a problem that the gradient is defined with respect

https://slideplayer.com/slide/4916524/
https://en.wikipedia.org/wiki/Atlas_(topology)

IFT 6132 Final Project

Figure 5. A Manifold M and its tangent plane TxM at x. We
also see a curve γ(t) ∈ M , with its associated tangent vector
v ∈ TxM . (Wikipedia: Tangent space)

to an arbitrary chart, as it will clearly be different in different
charts, but we will be saved by the inner product which
will also be different in different charts, and counteract the
gradient.

The last missing structure that we need on the manifold
is a Riemannian metric. A Riemannian metric2 g : M ×
∪xTxM × ∪xTxM → R is an inner product defined on
every tangent space. Given two vectors vx, wx ∈ TxM ,
their inner product is denoted gx(vx, wx). Given a manifold,
we can define g purely intrinsically, but in many cases of
interest for optimization, g will be induced from the ambient
embedding space. For an example, see section 3.

In order to understand Algorithm 1, we are now only missing
one ingredient, the Retraction. As we mentioned before, a
retraction R : ∪xTxM →M is a map from tangent spaces
to the manifold. In particular, given a vector vx ∈ TxM ,
we write Rx(vx) to refer to the point where vx is sent by
the retraction. As an example, in Figure 5, Rx(v) might
send to one point along the curve γ. Following geodesics
(so called ”straight lines” on manifolds, see section 4.2) is
probably the most famous kind of retraction. However, it is
computationally expensive as it requires solving a nonlinear
ordinary differential equation. Fortunately, the majority of
interesting manifold optimization problems lie in matrix
spaces, in which effective projections are often possible.
Again, we leave an example of this to section 3.

3. The Sphere as a Basic Example
We will now look in more details at the eigenvalue example
from source code 1, and in particular the Riemannian Gradi-
ent Descent method from Algorithm 1. We can rewrite that
algorithm more compactly as

2Note that it is called a ”metric” for historical reasons, but it
isn’t a metric!

xk+1 = Retractionxk
(−αkgradf(xk))

Hence, all that we need to do is to define the gradient and
the retraction on the sphere. It turns out the easiest way to
define the Riemannian metric on the sphere is actually to
view it as an embedded manifold of Rn, and to make use of
the ambient Euclidean metric.

In this regard, the Riemannian gradient on the tangent plane
turns out to simply be the orthogonal projection of the clas-
sical gradient:

gradf(x) = (I − xx>)∇f(x)

As for the retraction, a simple projection works well:

Retractionx(u) =
x+ u

||x+ u||

Finally, we note that the eigenvalue example from source
code 1 used the cost function f(x) = −xTAx, but noth-
ing of what we just wrote depends on this fact. Indeed,
the above Riemannian Gradient Descent algorithm on the
Sphere would work for any cost function. Table 1 summa-
rizes all of the details for the Sphere.

4. Convergence guarantees
Apart from its beautiful and insightful geometric inter-
pretation, manifold optimization also comes with local
convergence guarantees to first-order critical points of f .
The first-order necessary optimality conditions are simply
gradf(x) = 0, which is much less work than having to go
through Lagrange multipliers to establish KKT conditions.
Readers interested in learning more about this are invited to
read section 4 of (Absil et al., 2008).

Yet, manifolds of interest are typically non convex, so that
very little is known when it comes to computing global op-
timizers. Given the nature of this course, called Structured
Prediction And Convex Optimization, we thought it would
be worthwhile do to a bit of work in trying not to completely
give up convex-like guarantees. A sneak-peek at Figure 6
will explain what we mean. Although we lost convexity,
it will be possible to define a new notion, that of geodesic
convexity, which will have all the same guarantees but on
manifolds. Properly explaining geodesic convexity however
requires an even broader coverage of differential geometry,
and we will hence only be able to dip our toes into the sub-
ject. We start with a quick review of convexity and convex
optimization, and then follow-up with geodesic convexity.

https://en.wikipedia.org/wiki/Tangent_space

IFT 6132 Final Project

Manifold (Sn−1) Embedding (Rn)

cost f(x) = xTAx, x ∈ Sn−1 f̄(x) = xTAx, x ∈ Rn

metric induced metric ḡ(v, w) = vTw

tangent space v ∈ Rn : xT v = 0 Rn

normal space v ∈ Rn : v = αx ∅
projection onto tangent space Pxv = (I − xxT)v identity

gradient grad f(x) = Pxgradf̄(x) grad f̄(x) = 2Ax

retraction Rx(v) = x+v
||x+v|| Rx(v) = x+ v

Table 1. Optimization on the unit sphere. Table reproduced from (Absil et al., 2008).

4.1. Convexity and Convex Optimization

In standard form, a convex optimization problem is written
as

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 i = 1, . . . , p

hj(x) = 0 j = 1, . . . , q

(1)

where f and gi are convex, and hj are affine. Following
Table 2, we will break down the concepts underlying this
formulation.

First, we need a space in which to perform optimization.
Here, we have x ∈ Rn. In section 2, we will generalize this
space to smooth manifolds.

Then, we need to be able to be able to define functions on
this space, and to take their derivative3.

With this in hand, we can now define straight lines, which
are curves γ(t) : R → Rn whose derivative γ′(t) is con-
stant, or in other words whose second derivative is the zero
vector: γ′′(t) = 0. We often simply define the line seg-
ment between p and q as being γqp(t) = q + t(p− q), for
t ∈ [0, 1]. Notice that this agrees with the above definition
since γ′′qp(t) = 0. This new definition however will permit
generalization to the manifold setting.

Convex sets are then defined as sets for which straight lines
between any two points in the set, are entirely contained
inside the set.

Convex functions can similarly be defined as those whose
epigraph is a convex set, but this definition won’t generalize
as easily. We instead prefer the classical definition: a func-
tion f is convex if for any two points a and b in its domain,
the straight line between f(a) and f(b) never dips below
f , or equivalently, γf(a)f(b)(t) = f(a) + t(f(b)− f(a)) ≥

3We will only concentrate on twice differentiable functions,
though subgradient methods have also been generalized to mani-
folds (Ferreira & Oliveira, 1998)

f(a+ t(b− a)) = f(γab(t)) for t ∈ [0, 1].

Convex functions have a single global minimum. This can
be argued as follows. The first order definition of convexity
(which can be proved starting from the 0th order definition
above), is that for all x, y, f(x) +∇f(x)(y − x) ≤ f(y).
If two points are local minima with different values, say
x∗ and y∗ such that f(x∗) ≥ f(y∗). Then by definition
of being a local minimum, we have ∇f(x∗) = 0, and so
f(x∗) ≤ f(y∗). Exchanging roles of x∗ and y∗ shows
that f(x∗) = f(y∗). This shows that all global minima
must have the same value. Furthermore, the constraints in
problem 1 are convex functions, and the pre-image of convex
sets of convex functions is convex. Hence, the feasible
region is a convex set, so the every local minimum is a
global minimum.

4.2. Geodesic Convexity

Following Figure 6, just like manifold optimization should
be thought of as a subset of constrained optimization,
geodesic convexity should be thought of as extending the
now ubiquitous concept of convexity, which only applies
in Euclidean spaces, to the larger domain of Riemannian
manifolds. Not only does it promise to extend convex opti-
mization’s outreach to a whole new set of problems, but also
to rethink established problems, such as Gaussian mixture
models, and in so doing sometimes outperform prevailing
methods (Hosseini & Sra, 2019).

Inside manifold optimization, we find geodesically con-
vex optimization, which itself contains convex optimization.
Convex optimization is already well established and rec-
ognized, it’s importance often summarized by R. Tyrrell
Rockafellar’s enlightening quote: ”The great watershed in
optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity.”4 Indeed, convex optimization
is a very rich class of problems that maintain the crucial
property that local minima are global minima, while still
being almost as fast as linear programming on modern hard-

4SIAM Review, 1993.

IFT 6132 Final Project

Convexity Geodesic Convexity
Euclidean Space Riemannian Manifold

Derivative Covariant Derivative
Straight Line Geodesic
Convex Set Geodesically Convex Set

Convex Function Geodesically Convex Function
Local = Global Local = Global

Algorithms Riemannian Algorithms

Table 2. Making explicit the often implicitly assumed concepts
underlying convexity, and generalizing them to Riemannian Man-
ifolds. The dependency structure amongst the concepts can be
viewed as an inverted stack: a concept depends on all concepts
above it.

ware. Geodesically convex optimization is its younger, not
yet established cousin, promising to expand the class of
problems that we can tackle while maintaining the ”local is
global” property.

Convex
Optimization

Geodesically
Convex Optim.

Manifold
Optimization

Constrained
Optimization

Figure 6. Hierarchy of optimization concepts referred to in this
report.

A comparison of convexity and geodesic convexity is pre-
sented in Table 2, which is largely inspired from a talk given
by Nisheeth Vishnoi at the Institute for Advanced Stud-
ies (Vishnoi, 2018a) and his related notes (Vishnoi, 2018b).
The ”local is global” property of these two classes of prob-
lems is included in the second to last row in the table. In
Euclidean spaces, the convexity assumption, necessary for
this property to hold, is often tersely written as ∇2f � 0.
This terseness, however, hides a lot of underlying, often
implicitly defined, concepts, such as ”straight line”. In order
to generalize the concept to that of geodesic convexity, we
need to make explicit every one of these implicit concepts,
which this table does.

The first row is the generalization from Euclidean spaces to
Riemannian manifolds that we have spent the majority of
this report explaining. Explaining the second and third row
properly would require another report of equal length, and
we refer interested readers to consult chapter 5 of (Absil

et al., 2008). The covariant derivative∇5, also called affine
connection, gives us the ability to take directional derivatives
not only of functions f : M → R on M , but also of vector
fields X : M → ∪xTxM , that is functions which associate
to every point p ∈M a vector of the tangent space at x. This
is much harder to do because it requires comparing vectors
from different tangent spaces that aren’t apriori related.

With this defined, geodesics, so called ”straight lines”
on manifolds, are then defined as curves γ for which
∇γ̇(t)γ̇(t) = 0 for all t. Intuitively, this says that geodesics
are curves whose velocity (γ̇) doesn’t change, similarly
to how we defined straight lines in Rn to be those whose
second derivative γ′′(t) = 0! The classical example of a
geodesic is the equator on a sphere. Note however, that
there can be more than one geodesic between two points.
For example, there are infinitely many geodesics between
the north and south pole.

With these concepts in hand, generalizing convexity to man-
ifolds is almost automatic. A geodesically convex set is a
set A ⊆M such that given two points p, q ∈ A, there exists
a geodesic connecting p and q which entirely lies inside A.
A geodesically convex function is a function such that for
any two points a and b in its domain, the geodesic between
f(a) and f(b) never dips below f . And that’s it. Geodesic
convexity has made some small breakthroughs (Vishnoi,
2018b), but its real power remains to be shown, as there still
remain a lot of open questions related to it.

5. Conclusion
In conclusion, Manifold optimization is an alternative to
constrained optimization. It’s theory is now mature, and
there is standard open-source software that makes it acces-
sible to nonspecialists. Yet, it remains a fruitful ground
for further research, and further comparisons to standard
optimization algorithms.

Acknowledgements
We would like to thank Simon Lacoste-Julien for teaching
this amazing class, and for giving us the freedom to work
on a project not directly related to the class material.

References
Absil, P.-A. and Malick, J. Projection-like retractions on

matrix manifolds. SIAM Journal on Optimization, 22:
135–158, 2012.

Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization
Algorithms on Matrix Manifolds. Princeton University

5The covariant derivative uses the same symbol as the gradient
because it is a generalization of the gradient.

IFT 6132 Final Project

Press, Princeton, NJ, 2008. ISBN 978-0-691-13298-3.

Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R.
Manopt, a Matlab toolbox for optimization on manifolds.
Journal of Machine Learning Research, 15:1455–1459,
2014. URL http://www.manopt.org.

Edelman, A., Arias, T. A., and Smith, S. T. The geometry
of algorithms with orthogonality constraints. SIAM jour-
nal on Matrix Analysis and Applications, 20(2):303–353,
1998.

Ferreira, O. P. and Oliveira, P. R. Subgradient algorithm
on riemannian manifolds. Journal of Optimization The-
ory and Applications, 97(1):93–104, 1998. doi: 10.
1023/A:1022675100677. URL https://doi.org/
10.1023/A:1022675100677.

Ghojogh, B., Karray, F., and Crowley, M. Eigenvalue and
generalized eigenvalue problems: Tutorial. arXiv preprint
arXiv:1903.11240, 2019.

Hosseini, R. and Sra, S. An alternative to em for gaussian
mixture models: Batch and stochastic riemannian opti-
mization. Mathematical Programming, pp. 1–37, 2019.

Loring, W. T. An introduction to manifolds, 2008.

Munkres, J. R. Topology second edition prentice hall. 2000.

Renze, J., Rowland, T., and Weisstein, E. W. Com-
pact manifold. From MathWorld–A Wolfram Web
Resource. URL https://mathworld.wolfram.
com/CompactManifold.html. Accessed: 2020-
04-27.

Townsend, J., Koep, N., and Weichwald, S. Pymanopt:
A python toolbox for optimization on manifolds using
automatic differentiation. Journal of Machine Learning
Research, 17(137):1–5, 2016. URL http://jmlr.
org/papers/v17/16-177.html.

Vishnoi, N. An introduction to geodesic convex-
ity. https://video.ias.edu/OCIT/2018/
0607-NisheethVishnoi, 2018a. Accessed: 2020-
04-27.

Vishnoi, N. K. Geodesic convex optimization: Differen-
tiation on manifolds, geodesics, and convexity. arXiv
preprint arXiv:1806.06373, 2018b.

http://www.manopt.org
https://doi.org/10.1023/A:1022675100677
https://doi.org/10.1023/A:1022675100677
https://mathworld.wolfram.com/CompactManifold.html
https://mathworld.wolfram.com/CompactManifold.html
http://jmlr.org/papers/v17/16-177.html
http://jmlr.org/papers/v17/16-177.html
https://video.ias.edu/OCIT/2018/0607-NisheethVishnoi
https://video.ias.edu/OCIT/2018/0607-NisheethVishnoi

